高温環境下での高精度基板反り計測を可能とする

温度可変基板反り検査装置

1. はじめに

近年スマートフォンやタブレット PC あるいはウルト ラブックなどの可搬コンピュータの急速な普及に伴い半 導体パッケージの小型化・薄型化が加速している。

この半導体パッケージの高機能化は、図1に示すよ うに、パッケージ基板実装にボンディングワイヤを使用 せず、パッケージ基板表面にバンプ^{注1)}を形成して直接電 気的に接続できるフリップチップ実装にすることで実現 される。フリップチップ実装ではパッケージ基板全面に 電極であるバンプを形成できるため、従来のワイヤボン ディング実装と比べて、微細配線であってもLSIチッ プを小型化・薄型化することができる。

図1 パッケージ基板実装方法

一方,バンプの接続はリフロー^{注2}工程においてバンプ を融解させ接続するが,その際,図2のようにバンプ が載ったパッケージ基板に反りが発生すると,一部のバ ンプ部で実装不良となってしまう。この反り量はバンプ が微小であるほど実装への影響が大きい。近年ではバン プの微細化に加え,環境に配慮した鉛フリーはんだが使 用されるようになったことで,はんだの融点が高く,従 来より数十度リフロー温度を上げるため,パッケージ基 板への熱ストレスが大きく,反りも起こりやすくなって いる。

このような背景から,製品の品質や歩留まりを改善す るためパッケージ基板加熱中の反り状態を詳細に計測で きる装置のニーズが高まっており,東光高岳ではこの要 求に応えるべく,業界トップシェアを持つ当社の三次元 検査装置で培ってきた共焦点計測技術に,独自に開発し

井上 征利	石原 満宏	日名子 達也
Masatoshi Inoue	Mitsuhiro Ishihara	Tatsuya Hinago
たセンサ用断	熱機構と加熱機構を維	1み合わせて加熱中に

おけるパッケージ基板の反り計測を可能とする温度可変 基板反り検査装置(図3を参照)を実用化した。 以下に、その概要を紹介する。

図3 温度可変基板反り検査装置の外観

2. 計測原理

共焦点光学系による三次元計測では、対物レンズの焦 点位置と共役な位置にピンホールを配置し、計測対象物 とピンホールとの位置関係を微動させることで、ピンホ ールを通過する反射光量が最大となる位置を求めること により、計測対象物の高さを算出している。

本装置では図4に示すように、このピンホールを必 要画素分二次元配列することでXY 走査を必要としない 共焦点撮像光学系(以下,非走査型共焦点という)と し、さらに、三次元センサ(以下、3D センサという) 部に Z 軸ステージを用いて Z 走査を行う手法を用いて いる。この光学系は全画素同時計測型であることから, Z軸ステージを連続移動させ,所定の高さ位置で高速シ ャッタ露光できることから,通常の走査型共焦点と比較 して高速に計測することが特長である。

表1に今回開発した3Dセンサ部の主な仕様を示す。 3Dセンサはお客さまの計測対象物によって,視野サイズおよびXY分解能の異なる2種類のセンサから選択できる。

センサ型式	NCS-5020EX-KN	NCS-5220EX-KN
測定原理	非走查型共焦点	
Z 計測範囲	最大 3.0 mm	
Z 分解能	0.1 μ m	
Z 走査速度	最大 1.0 mm/sec	
視野サイズ	6.0×6.0 mm	9.0×9.0 mm
XY 分解能	6.2 μ m	9.3 μm

表1 3D センサ部の主な仕様

3. 装置構成と仕様

3.1 装置の特長

- 本装置の特長は次のとおりである。
- (1) 独自に開発したセンサ用断熱機構により,加熱対 象物から 3D センサへの伝熱を遮断し,熱の影響を 受けない高精度で安定した計測を実現している。
- (2) 加熱後の加熱対象物をクーラで冷却して,計測時 間の短縮を図っている。
- (3) 16 ステップまでの温度制御プロファイル(室温 ~最大 260 ℃)が作成可能で、専用の金属性 JEDEC^{注3}トレイ(以下、メタルトレイという)に 載せられた加熱対象物を多様な温度下で計測でき る。
- (4) ヒータによる両面同時加熱により,加熱対象物表 裏面の温度差が少ない均一な加熱ができる。
- (5) 専用のアプリケーションにより, 計測結果の解析 や鳥瞰図表示が容易に行える。

3.2 装置構成

図5に本装置の構成ブロック図を、図6に装置本体 加熱計測部の構成図を、表2に基本仕様を示す。

XYZ 軸ステージ上のテーブル上に赤外線ヒータを6 本配列した加熱ケースを設置し,加熱ケースの上部に多 数の加熱対象物を載せたメタルトレイを配置する。3D センサとメタルトレイとの間にはプレートヒータを設置 し,メタルトレイ上の加熱対象物を上方からはプレート ヒータによる対流熱伝達で,下方からは赤外線ヒータの 熱輻射で加熱する。このように両面加熱により加熱対象 物表裏での温度差の発生を抑制している。

加熱対象物には熱電対を貼り付け,最大5箇所の温度 データを基に赤外線ヒータおよびプレートヒータの温度 制御を行っている。

メタルトレイの外形は JEDEC 規格で 322.6 mm× 135.9 mmと規定されているが,搭載する加熱対象物の サイズや個数,固定方法などはお客さまが任意に設計し たメタルトレイを使用しての計測も可能である。

3D センサ部の下方で XYZ 軸ステージが移動するこ とで,加熱しながらメタルトレイ全面の領域で計測がで きるようになっている。計測動作は加熱対象物が温度プ ロファイルに基づき目標温度に達し,任意に設定した時 間経過後に行われる。

また、3D センサ周囲温度の上昇および結露の発生を 防ぐために装置用エアコンを装備している。さらに、計 測時間を速めるため加熱対象物を加熱した後に加熱対象 物を高速で冷却する冷却用クーラおよび排熱用ブロアを 装備している。断熱機構部には常時エアーと冷却水が供 給され、図7に示すように、高温な加熱対象物を計測 中でも 3D センサ部の温度を一定に保ち、3D センサ部 の保護および安定した計測を実現している。

図5 装置構成ブロック図

-72-

項目	仕様
温度可変範囲	室温~260℃
加熱 / 冷却速度	最大 1.0℃/sec / - 0.35℃/sec
平面計測精度	<2.0 µ m
計測速度	<2.0 sec (**)
計測項目	基板反り、バンプ高さ・平坦度 etc
装置本体サイズ	$1,200(W) \times 1,960(D) \times 1,800(H) mm$
質量	2,500 kg

Ē

※ Z 計測範囲 1 mm 時の 1 視野あたりの計測時間

4. 測定結果

4.1 表裏温度差の例

図8に両面加熱と赤外線ヒータのみの片面加熱した 場合の加熱対象物の表裏温度差を比較したグラフの一例 を示す。厚みや材質,内部の配線パターンなど加熱対象 物の条件によって伝熱特性は異なるが,樹脂材を使用し た1.5 mm 厚の積層基板で測定した結果,片面加熱で25 ℃の温度差があったものが,両面加熱により温度差が5 ℃まで低減した。これにより本装置の両面加熱が表裏面 温度差を抑制するのに有用な加熱方法であることを確認 できた。

4.2 計測結果

高温加熱時の反り計測精度を評価するために,低膨張 材質である合成石英ガラスを用いて平面度計測を行っ た。

面精度 $\lambda/4$ (0.158 μ m) の 50×50 mm 合成石英(熱 膨張率 5.5×10⁻⁷/℃) 平行平面ガラスを用い,その中心 部 25×25 mm 領域の反り計測し(9 視野繋ぎ合わせ) 平面度(最小二乗平面からの偏差の最大最小値差)を評 価したところ,常温 25℃で 0.63 μ m,加熱時 236℃で 1.01 μ m の結果が得られた。これにより本装置の 3D セ ンサは熱の影響をほとんど受けずに,サブマイクロメー タレベルの誤差で平面度計測ができ,パッケージ基板の 計測には十分な性能を有していることが確認できた。

4.3 実サンプル計測例

図9に実際のバンプ付パッケージ基板の計測結果例 を示す。バンプの高さも同時計測しているが、各温度帯 のパッケージ基板反りのみを表示している。本装置は各 温度での基板反り表示だけでなく、計測した結果の反り の差分の表示もできることから、加熱・冷却によってど のような反り変化が起きたかを詳細、かつ、容易に把握 することができる。

図8 加熱方式による表裏温度差比較

図9 パッケージ基板の計測例

5. おわりに

以上,開発した温度可変基板反り検査装置の概要を説 明した。今後は,計測速度の向上と加熱性能の改良を進 める。また,パッケージ基板に限らず幅広い分野での加 熱計測を可能とするより汎用性の高い装置を開発してい く所存である。

■参考文献

(1) JEDEC : High Temperature Package Warpage Measurement Methodology, JESD22B112, 2005

(2)石原満宏:「昇温機能付半導体パッケージ基板 反り計測装置の開発」,2012年度精密工学会秋季大会学 術講演会講演論文集,p.627-628

■語句説明

注1) バンプ: 基板上に形成された突起状の微小電極 部。リフロー工程時に融解しはんだ付けされる。

注2) リフロー: 基板上にはんだペーストを印刷し, その上に部品を載せてから熱を加えてはんだを溶かして 接合する方法。 注 3) JEDEC: Joint Electron Device Engineering Council の略称で、半導体技術の標準化を行う団体。JEDEC トレイはその規格(外周サイズ)に準拠した電子部品を 載せるトレイのことを指す。

井上 征利 光応用検査機器事業本部 技術開発部 開発グループ 所属 三次元検査装置の開発に従事

石原 満宏 光応用検査機器事業本部 技術開発部 所属 三次元検査装置の開発に従事 博士(工学),精密工学会,OSA,SPIE 各会会員

日名子 達也 光応用検査機器事業本部 技術開発部 開発グループ 所属 三次元検査装置の開発に従事