振動解析装置

製品紹介

■ 木村 聡行 Satoyuki Kimura ■ 吉田 耕作 Kousaku Yoshida

1 はじめに

モータやポンプ等の機器が発する振動成分を解析することで、異常診断を行うことが可能であり、機器の予知保全に役立てることが可能である。予知保全を行うことにより突発性の機器停止を防止したり、適切な部品交換の見極めが可能となるなどの効果が期待できる。それらを可能にする振動解析装置の活用は、予知保全の有効な手段として注目されてきている。

現在市販されている振動解析装置は、故障原因の解析 まで行える高機能だが高価な製品と、振動測定を行って その結果データを示すだけの低機能だが安価な製品と いった二極化した状況である。

今回,FFT^{注1)}グラフを表示することで故障解析に寄与できる,高機能かつ安価な振動解析装置(以下「本装置」)を開発したので紹介する。なお,本装置は半導体デバイスメーカである ANALOG DEVICES 社と共同で開発したものである。

2 製品の特長

2.1 製品概要

本製品の特長は以下のとおりである。

- ・安価に FFT 結果が取得できる。
- ・FFT 解析後の加速度データを SD カードに保存して 後日解析ができる。
- ・PCで設定した閾値を超えた場合に、警報が上げられセンサとして利用できる。
- ・シリアル通信にて PC を接続すると FFT 結果をグラフ表示できる。

2.2 製品外観と FFT グラフ

本製品の外観図を図1に, FFT グラフの例を図2示す。

図 1 製品外観

図2 FFT グラフ

正常時のグラフと定期的に比較することで,機器の異 常判断をすることができる。

FFT グラフは、横軸が周波数 (Hz)、縦軸は大きさ (dBFS) になる。**図 2** は 16 kHz の振動を入力したとき のグラフである。

3 機能・仕様

3.1 製品仕様

主な製品仕様について、表1に示す。

表 1 製品仕様

項目	仕 様		
サイズ	W96 × D145 × H35 [mm] (突起物除く)		
電源	AC100 V または単三電池		
加速度センサ	ADXL356, ADXL1002		
動作温度範囲	-20°C~60°C		
防水機能	なし		
外部 IF	DIDO	DI1 点 (将来対応予定) DO2 点 (警報出力) 電圧 3.3 V	
	LED	4 点	
	UART	PC 接続用	
	SD カード	miniSD	

※上記仕様は予告なく変更する場合がある。

図3 システム構成案

対応センサの主な仕様を表2に示す。

表 2 対応センサ

項目	ADXL356B (C)	ADXL1002
共振周波数帯域	5.5 kHz	21 kHz
-3 dB 周波数帯域	1.5 kHz	11 kHz
検知軸	X, Y, Z	Х
測定範囲	$\pm 20 \text{g} (\pm 40 \text{g})$	± 50 g
測定精度	$40{\rm mV}\pm 8\%{\rm /g}$	$40\mathrm{mV}\pm5\%$ /g
動作温度範囲	-40°C∼125°C	-40°C∼125°C

- ※ 1 ADXL1002 は使用電力量が大きいため電池駆動不可
- ※2 ADXL356B(C)はX,Y,Zの3軸の内1軸を利用(設定により可変)

3.2 機能仕様

装置の機能仕様を表3に示す。

表 3 機能仕様

4なり 成形に1米				
項目	仕 様			
データ算出	時間軸解析	Peak/RMS/ CrestFactor		
	ADC サンプリン グレート	102.4 kSPS		
	FFT 点数	4096 点		
	平均化	1~256 点を設定可能		
ピーク検出	周波数帯を8箇所設定可能 閾値を2段階設定可能			
PC 接続	UART (9600-230400 bps)			
データ保存	SD カードに最大 60 日間保存			
SD カード	SDHC			

※上記仕様は予告なく変更する場合がある。

(1) ピーク検出機能

ピーク検出は、対象とする周波数帯と、閾値を2段階設定する。それぞれの閾値を超えた場合に、DOを介し警報装置やEcoQuest^{注2)}でユーザに通知することができる。周波数帯域は8点を設定可能である。システム構成案を**図3**に示す。

(2) PC 接続

アラームの閾値や範囲などの設定や, グラフ表示を行う PC 画面を**図4**に示す。

図 4 設定画面

画面は $python^{\pm 3)}$ で作成しているため、ユーザの OS を問わず使用できるようにしている。

(3) データ保存

検出したピーク値やその周波数, FFT 結果を SD カードにファイル保存している。

■語句説明

注 1) FFT: Fast Fourier Transform の略。高速フーリエ変換。本装置では 1 秒間に 4,096 回センサからデータを取得しており、FFTを掛けることで周波数成分に分解された結果が得られる。

注 2) EcoQuest: ユークエスト株式会社の 920 MHz 帯特 定省電力無線通信を使用したセンサーネットワーク製品の登 録商標(登録番号: 5265564)。

注3) python:汎用のプログラミング言語。シンプルで 構文規則が少ないため、近年注目されている言語である。

木村 聡行

ユークエスト株式会社 技術本部 電力システム部 所属

吉田 耕作

ユークエスト株式会社 技術本部 電力システム部 所属